MLOps & Model Deployment
Bringen Sie Ihre ML-Modelle erfolgreich in die Produktion. Lernen Sie bewährte Praktiken für Deployment, Monitoring, Versionierung und Skalierung von Machine Learning Systemen für Unternehmensautomatisierung.
MLOps Lifecycle
Development
Model Training & Experimentation
Deployment
Production Deployment & CI/CD
Operations
Monitoring & Maintenance
Was ist MLOps?
MLOps (Machine Learning Operations) ist ein Satz von Praktiken, die darauf abzielen, ML-Entwicklung und -Betrieb zu vereinheitlichen. Es kombiniert Machine Learning,DevOps und Data Engineering, um ML-Systeme zuverlässig und effizient zu entwickeln, zu deployen und zu verwalten.
Der Hauptunterschied zu traditioneller Software-Entwicklung liegt in der Komplexität von ML-Systemen: Sie müssen nicht nur Code, sondern auch Daten, Modelle und deren kontinuierliche Qualität verwalten.
Vorteile von MLOps
- •Schnellere Time-to-Market
- •Bessere Modell-Performance
- •Automatisierte Qualitätskontrolle
- •Skalierbare ML-Systeme
Herausforderungen
- •Model Drift und Data Drift
- •Datenqualität und -verfügbarkeit
- •Reproduzierbarkeit
- •Compliance und Governance
Model Packaging und Containerisierung
Der erste Schritt für Production-Deployment ist die Verpackung Ihres Modells in einen reproduzierbaren Container.
Docker container for ML models
# Dockerfile für ML-Model Service
FROM python:3.9-slim
WORKDIR /app
# System-Dependencies installieren
RUN apt-get update && apt-get install -y \
gcc \
g++ \
&& rm -rf /var/lib/apt/lists/*
# Python-Dependencies kopieren und installieren
COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt
# Modell und Code kopieren
COPY model/ ./model/
COPY src/ ./src/
COPY config/ ./config/
# Gesundheitscheck hinzufügen
HEALTHCHECK --interval=30s --timeout=30s --start-period=5s --retries=3 \
CMD curl -f http://localhost:8000/health || exit 1
# Non-root User erstellen
RUN useradd --create-home --shell /bin/bash app
USER app
# Service starten
EXPOSE 8000
CMD ["python", "src/serve.py"]FastAPI Model Service
# src/serve.py
from fastapi import FastAPI, HTTPException, BackgroundTasks
from pydantic import BaseModel
import joblib
import numpy as np
import pandas as pd
from typing import List, Dict, Any
import logging
import asyncio
from prometheus_client import Counter, Histogram, generate_latest, CONTENT_TYPE_LATEST
import time
app = FastAPI(
title="ML Model API",
description="Production ML Model Service",
version="1.0.0"
)
# Logging konfigurieren
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Prometheus Metriken
PREDICTION_COUNTER = Counter('ml_predictions_total', 'Total predictions made')
PREDICTION_DURATION = Histogram('ml_prediction_duration_seconds', 'Time spent on predictions')
ERROR_COUNTER = Counter('ml_errors_total', 'Total errors', ['error_type'])
class PredictionRequest(BaseModel):
features: List[float]
model_version: str = "latest"
class PredictionResponse(BaseModel):
prediction: float
confidence: float
model_version: str
timestamp: str
class ModelManager:
def __init__(self):
self.models = {}
self.load_models()
def load_models(self):
try:
# Hauptmodell laden
self.models['latest'] = joblib.load('model/model_latest.pkl')
self.models['v1.0'] = joblib.load('model/model_v1.0.pkl')
logger.info("Models loaded successfully")
except Exception as e:
logger.error(f"Error loading models: {e}")
raise
def predict(self, features: np.ndarray, version: str = "latest"):
if version not in self.models:
raise ValueError(f"Model version {version} not found")
model = self.models[version]
prediction = model.predict(features.reshape(1, -1))[0]
# Konfidenz berechnen (falls verfügbar)
confidence = 0.95 # Placeholder
if hasattr(model, 'predict_proba'):
proba = model.predict_proba(features.reshape(1, -1))[0]
confidence = max(proba)
return prediction, confidence
# Model Manager initialisieren
model_manager = ModelManager()
@app.get("/health")
async def health_check():
return {"status": "healthy", "timestamp": time.time()}
@app.get("/models")
async def list_models():
return {"available_models": list(model_manager.models.keys())}
@app.post("/predict", response_model=PredictionResponse)
async def predict(request: PredictionRequest):
start_time = time.time()
try:
# Eingabedaten validieren
if len(request.features) == 0:
ERROR_COUNTER.labels(error_type='invalid_input').inc()
raise HTTPException(status_code=400, detail="No features provided")
# Prediction durchführen
features = np.array(request.features)
prediction, confidence = model_manager.predict(features, request.model_version)
# Metriken aktualisieren
PREDICTION_COUNTER.inc()
PREDICTION_DURATION.observe(time.time() - start_time)
return PredictionResponse(
prediction=float(prediction),
confidence=float(confidence),
model_version=request.model_version,
timestamp=str(time.time())
)
except ValueError as e:
ERROR_COUNTER.labels(error_type='model_error').inc()
raise HTTPException(status_code=400, detail=str(e))
except Exception as e:
ERROR_COUNTER.labels(error_type='unknown').inc()
logger.error(f"Prediction error: {e}")
raise HTTPException(status_code=500, detail="Internal server error")
@app.get("/metrics")
async def metrics():
return Response(generate_latest(), media_type=CONTENT_TYPE_LATEST)
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)Requirements und Dependencies
# requirements.txt fastapi==0.104.1 uvicorn[standard]==0.24.0 pydantic==2.5.0 scikit-learn==1.3.2 pandas==2.1.3 numpy==1.25.2 joblib==1.3.2 prometheus-client==0.19.0 python-multipart==0.0.6 # Optionale Dependencies für erweiterte Features # tensorflow==2.15.0 # torch==2.1.0 # xgboost==2.0.2 # lightgbm==4.1.0 # Development Dependencies pytest==7.4.3 black==23.11.0 flake8==6.1.0 mypy==1.7.1
Kubernetes Deployment
Skalieren Sie Ihre ML-Services mit Kubernetes für hohe Verfügbarkeit und automatische Skalierung.
Deployment Manifest
# k8s/deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: ml-model-service
labels:
app: ml-model-service
version: v1.0.0
spec:
replicas: 3
selector:
matchLabels:
app: ml-model-service
template:
metadata:
labels:
app: ml-model-service
version: v1.0.0
spec:
containers:
- name: ml-model
image: your-registry/ml-model:v1.0.0
ports:
- containerPort: 8000
env:
- name: MODEL_VERSION
value: "v1.0.0"
- name: LOG_LEVEL
value: "INFO"
resources:
requests:
memory: "512Mi"
cpu: "250m"
limits:
memory: "1Gi"
cpu: "500m"
livenessProbe:
httpGet:
path: /health
port: 8000
initialDelaySeconds: 30
periodSeconds: 10
readinessProbe:
httpGet:
path: /health
port: 8000
initialDelaySeconds: 5
periodSeconds: 5
volumeMounts:
- name: model-storage
mountPath: /app/model
readOnly: true
volumes:
- name: model-storage
persistentVolumeClaim:
claimName: model-pvc
---
apiVersion: v1
kind: Service
metadata:
name: ml-model-service
spec:
selector:
app: ml-model-service
ports:
- protocol: TCP
port: 80
targetPort: 8000
type: ClusterIP
---
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
name: ml-model-hpa
spec:
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: ml-model-service
minReplicas: 2
maxReplicas: 10
metrics:
- type: Resource
resource:
name: cpu
target:
type: Utilization
averageUtilization: 70
- type: Resource
resource:
name: memory
target:
type: Utilization
averageUtilization: 80Ingress und Load Balancing
# k8s/ingress.yaml
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
name: ml-model-ingress
annotations:
kubernetes.io/ingress.class: nginx
nginx.ingress.kubernetes.io/rewrite-target: /
nginx.ingress.kubernetes.io/ssl-redirect: "true"
nginx.ingress.kubernetes.io/rate-limit: "100"
nginx.ingress.kubernetes.io/rate-limit-window: "1m"
spec:
tls:
- hosts:
- ml-api.yourdomain.com
secretName: ml-api-tls
rules:
- host: ml-api.yourdomain.com
http:
paths:
- path: /
pathType: Prefix
backend:
service:
name: ml-model-service
port:
number: 80
---
# Canary Deployment für A/B Testing
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
name: ml-model-canary
annotations:
kubernetes.io/ingress.class: nginx
nginx.ingress.kubernetes.io/canary: "true"
nginx.ingress.kubernetes.io/canary-weight: "10"
spec:
rules:
- host: ml-api.yourdomain.com
http:
paths:
- path: /
pathType: Prefix
backend:
service:
name: ml-model-service-canary
port:
number: 80CI/CD Pipeline for ML
Automatisieren Sie das Training, Testing und Deployment Ihrer ML-Modelle mit CI/CD-Pipelines.
GitHub Actions Workflow
# .github/workflows/ml-pipeline.yml
name: ML Model CI/CD Pipeline
on:
push:
branches: [ main, develop ]
pull_request:
branches: [ main ]
env:
REGISTRY: ghcr.io
IMAGE_NAME: ${{ github.repository }}/ml-model
jobs:
test:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: '3.9'
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install -r requirements.txt
pip install pytest pytest-cov
- name: Run unit tests
run: |
pytest tests/ --cov=src --cov-report=xml
- name: Upload coverage to Codecov
uses: codecov/codecov-action@v3
with:
file: ./coverage.xml
model-validation:
runs-on: ubuntu-latest
needs: test
steps:
- uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: '3.9'
- name: Install dependencies
run: |
pip install -r requirements.txt
- name: Download test data
run: |
aws s3 cp s3://ml-data-bucket/test-data.csv ./data/
env:
AWS_ACCESS_KEY_ID: ${{ secrets.AWS_ACCESS_KEY_ID }}
AWS_SECRET_ACCESS_KEY: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
- name: Validate model performance
run: |
python scripts/validate_model.py --threshold 0.85
- name: Generate model report
run: |
python scripts/generate_report.py --output model_report.html
- name: Upload model artifacts
uses: actions/upload-artifact@v3
with:
name: model-artifacts
path: |
model/
model_report.html
build-and-push:
runs-on: ubuntu-latest
needs: [test, model-validation]
if: github.ref == 'refs/heads/main'
steps:
- uses: actions/checkout@v4
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Log in to Container Registry
uses: docker/login-action@v3
with:
registry: ${{ env.REGISTRY }}
username: ${{ github.actor }}
password: ${{ secrets.GITHUB_TOKEN }}
- name: Extract metadata
id: meta
uses: docker/metadata-action@v5
with:
images: ${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}
tags: |
type=ref,event=branch
type=sha,prefix={{branch}}-
type=raw,value=latest,enable={{is_default_branch}}
- name: Build and push Docker image
uses: docker/build-push-action@v5
with:
context: .
push: true
tags: ${{ steps.meta.outputs.tags }}
labels: ${{ steps.meta.outputs.labels }}
cache-from: type=gha
cache-to: type=gha,mode=max
deploy:
runs-on: ubuntu-latest
needs: build-and-push
if: github.ref == 'refs/heads/main'
environment: production
steps:
- uses: actions/checkout@v4
- name: Set up kubectl
uses: azure/setup-kubectl@v3
with:
version: 'v1.28.0'
- name: Configure kubectl
run: |
echo "${{ secrets.KUBE_CONFIG }}" | base64 -d > kubeconfig
export KUBECONFIG=kubeconfig
- name: Deploy to Kubernetes
run: |
envsubst < k8s/deployment.yaml | kubectl apply -f -
kubectl rollout status deployment/ml-model-service
env:
IMAGE_TAG: ${{ github.sha }}
- name: Run smoke tests
run: |
kubectl port-forward service/ml-model-service 8080:80 &
sleep 10
python scripts/smoke_tests.py --endpoint http://localhost:8080Model Validation Script
# scripts/validate_model.py
import argparse
import joblib
import pandas as pd
import numpy as np
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
import logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def validate_model(model_path: str, test_data_path: str, threshold: float):
"""
Validiert die Modell-Performance gegen einen Mindest-Threshold
"""
logger.info(f"Loading model from {model_path}")
model = joblib.load(model_path)
logger.info(f"Loading test data from {test_data_path}")
test_data = pd.read_csv(test_data_path)
# Features und Target separieren
X_test = test_data.drop('target', axis=1)
y_test = test_data['target']
# Predictions
y_pred = model.predict(X_test)
# Metriken berechnen
accuracy = accuracy_score(y_test, y_pred)
precision = precision_score(y_test, y_pred, average='weighted')
recall = recall_score(y_test, y_pred, average='weighted')
f1 = f1_score(y_test, y_pred, average='weighted')
logger.info(f"Model Performance:")
logger.info(f" Accuracy: {accuracy:.4f}")
logger.info(f" Precision: {precision:.4f}")
logger.info(f" Recall: {recall:.4f}")
logger.info(f" F1-Score: {f1:.4f}")
# Threshold-Check
if accuracy < threshold:
logger.error(f"Model accuracy {accuracy:.4f} below threshold {threshold}")
return False
logger.info(f"Model validation passed! Accuracy {accuracy:.4f} >= {threshold}")
return True
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model", default="model/model_latest.pkl")
parser.add_argument("--data", default="data/test-data.csv")
parser.add_argument("--threshold", type=float, default=0.8)
args = parser.parse_args()
success = validate_model(args.model, args.data, args.threshold)
exit(0 if success else 1)Model Monitoring und Observability
Überwachen Sie die Performance Ihrer ML-Modelle in der Produktion und erkennen Sie frühzeitig Probleme.
Data Drift Detection
Erkennen Sie Veränderungen in der Datenverteilung, die die Modell-Performance beeinträchtigen können.
# monitoring/drift_detector.py
import numpy as np
import pandas as pd
from scipy import stats
from typing import Dict, Tuple
import logging
class DataDriftDetector:
def __init__(self, reference_data: pd.DataFrame, significance_level: float = 0.05):
self.reference_data = reference_data
self.significance_level = significance_level
self.reference_stats = self._compute_reference_stats()
def _compute_reference_stats(self) -> Dict:
"""Referenz-Statistiken berechnen"""
stats_dict = {}
for column in self.reference_data.columns:
if self.reference_data[column].dtype in ['int64', 'float64']:
stats_dict[column] = {
'mean': self.reference_data[column].mean(),
'std': self.reference_data[column].std(),
'distribution': self.reference_data[column].values
}
else:
# Kategorische Variablen
stats_dict[column] = {
'categories': self.reference_data[column].value_counts().to_dict()
}
return stats_dict
def detect_drift(self, current_data: pd.DataFrame) -> Dict:
"""Data Drift Detection mit statistischen Tests"""
drift_results = {}
for column in self.reference_data.columns:
if column not in current_data.columns:
continue
if self.reference_data[column].dtype in ['int64', 'float64']:
# Numerische Variablen: Kolmogorov-Smirnov Test
ref_values = self.reference_stats[column]['distribution']
current_values = current_data[column].values
ks_statistic, p_value = stats.ks_2samp(ref_values, current_values)
drift_results[column] = {
'test': 'ks_test',
'statistic': ks_statistic,
'p_value': p_value,
'drift_detected': p_value < self.significance_level,
'severity': self._calculate_severity(ks_statistic)
}
else:
# Kategorische Variablen: Chi-Square Test
ref_counts = self.reference_stats[column]['categories']
current_counts = current_data[column].value_counts().to_dict()
# Gemeinsame Kategorien
all_categories = set(ref_counts.keys()) | set(current_counts.keys())
ref_freq = [ref_counts.get(cat, 0) for cat in all_categories]
current_freq = [current_counts.get(cat, 0) for cat in all_categories]
if sum(current_freq) > 0 and sum(ref_freq) > 0:
chi2_stat, p_value = stats.chisquare(current_freq, ref_freq)
drift_results[column] = {
'test': 'chi2_test',
'statistic': chi2_stat,
'p_value': p_value,
'drift_detected': p_value < self.significance_level,
'severity': self._calculate_severity_categorical(chi2_stat)
}
return drift_results
def _calculate_severity(self, ks_statistic: float) -> str:
"""Schweregrad des Drifts basierend auf KS-Statistik"""
if ks_statistic < 0.1:
return "low"
elif ks_statistic < 0.25:
return "medium"
else:
return "high"
def _calculate_severity_categorical(self, chi2_stat: float) -> str:
"""Severity for categorical variables"""
if chi2_stat < 10:
return "low"
elif chi2_stat < 50:
return "medium"
else:
return "high"
# Verwendung in der Monitoring-Pipeline
def monitor_data_drift(current_batch: pd.DataFrame, reference_data: pd.DataFrame):
detector = DataDriftDetector(reference_data)
drift_results = detector.detect_drift(current_batch)
# Alerts senden
for column, result in drift_results.items():
if result['drift_detected']:
logging.warning(f"Data drift detected in column '{column}': "
f"p-value={result['p_value']:.4f}, "
f"severity={result['severity']}")
# Alert-System (Slack, Email, etc.)
send_alert(f"Data drift in {column}", result)
return drift_resultsModel Performance Monitoring
Überwachen Sie die Modell-Performance kontinuierlich und reagieren Sie auf Verschlechterungen.
# monitoring/performance_monitor.py
import pandas as pd
import numpy as np
from typing import Dict, List
from dataclasses import dataclass
from datetime import datetime, timedelta
import sqlite3
@dataclass
class PredictionLog:
timestamp: datetime
model_version: str
features: List[float]
prediction: float
confidence: float
actual_value: float = None # Wird später über Feedback-Loop gefüllt
class ModelPerformanceMonitor:
def __init__(self, db_path: str = "model_monitoring.db"):
self.db_path = db_path
self._setup_database()
def _setup_database(self):
"""Set up SQLite database for logging"""
conn = sqlite3.connect(self.db_path)
cursor = conn.cursor()
cursor.execute('''
CREATE TABLE IF NOT EXISTS predictions (
id INTEGER PRIMARY KEY AUTOINCREMENT,
timestamp DATETIME,
model_version TEXT,
features TEXT,
prediction REAL,
confidence REAL,
actual_value REAL,
created_at DATETIME DEFAULT CURRENT_TIMESTAMP
)
''')
cursor.execute('''
CREATE TABLE IF NOT EXISTS performance_metrics (
id INTEGER PRIMARY KEY AUTOINCREMENT,
date DATE,
model_version TEXT,
metric_name TEXT,
metric_value REAL,
created_at DATETIME DEFAULT CURRENT_TIMESTAMP
)
''')
conn.commit()
conn.close()
def log_prediction(self, log_entry: PredictionLog):
"""Prediction loggen"""
conn = sqlite3.connect(self.db_path)
cursor = conn.cursor()
cursor.execute('''
INSERT INTO predictions
(timestamp, model_version, features, prediction, confidence, actual_value)
VALUES (?, ?, ?, ?, ?, ?)
''', (
log_entry.timestamp,
log_entry.model_version,
str(log_entry.features), # JSON als String
log_entry.prediction,
log_entry.confidence,
log_entry.actual_value
))
conn.commit()
conn.close()
def calculate_daily_metrics(self, date: datetime, model_version: str) -> Dict:
"""Calculate daily performance metrics"""
conn = sqlite3.connect(self.db_path)
# Predictions für den Tag abrufen
query = '''
SELECT prediction, actual_value, confidence
FROM predictions
WHERE DATE(timestamp) = ?
AND model_version = ?
AND actual_value IS NOT NULL
'''
df = pd.read_sql_query(query, conn, params=(date.date(), model_version))
conn.close()
if len(df) == 0:
return {}
# Metriken berechnen
mae = np.mean(np.abs(df['prediction'] - df['actual_value']))
mse = np.mean((df['prediction'] - df['actual_value']) ** 2)
rmse = np.sqrt(mse)
# Konfidenz-Kalibrierung
avg_confidence = df['confidence'].mean()
accuracy_in_conf_range = self._calculate_confidence_accuracy(df)
metrics = {
'mae': mae,
'mse': mse,
'rmse': rmse,
'avg_confidence': avg_confidence,
'confidence_accuracy': accuracy_in_conf_range,
'prediction_count': len(df)
}
# Metriken in DB speichern
self._store_metrics(date.date(), model_version, metrics)
return metrics
def _calculate_confidence_accuracy(self, df: pd.DataFrame) -> float:
"""Calculates how well the confidence estimates are calibrated"""
# Binning nach Konfidenz-Levels
bins = np.linspace(0, 1, 11) # 10 Bins
df['conf_bin'] = pd.cut(df['confidence'], bins=bins)
accuracies = []
for bin_name, group in df.groupby('conf_bin'):
if len(group) > 0:
# Genauigkeit in diesem Konfidenz-Bereich
errors = np.abs(group['prediction'] - group['actual_value'])
# Normalisieren auf 0-1 Skala (je nach Problem anpassen)
normalized_accuracy = 1 - np.mean(errors) / np.std(df['actual_value'])
accuracies.append(normalized_accuracy)
return np.mean(accuracies) if accuracies else 0.0
def _store_metrics(self, date, model_version: str, metrics: Dict):
"""Metriken in Datenbank speichern"""
conn = sqlite3.connect(self.db_path)
cursor = conn.cursor()
for metric_name, metric_value in metrics.items():
cursor.execute('''
INSERT INTO performance_metrics
(date, model_version, metric_name, metric_value)
VALUES (?, ?, ?, ?)
''', (date, model_version, metric_name, metric_value))
conn.commit()
conn.close()
def detect_performance_degradation(self, model_version: str,
lookback_days: int = 7) -> Dict:
"""Performance-Verschlechterung erkennen"""
conn = sqlite3.connect(self.db_path)
end_date = datetime.now().date()
start_date = end_date - timedelta(days=lookback_days)
query = '''
SELECT date, metric_name, metric_value
FROM performance_metrics
WHERE model_version = ?
AND date BETWEEN ? AND ?
ORDER BY date
'''
df = pd.read_sql_query(query, conn,
params=(model_version, start_date, end_date))
conn.close()
if len(df) == 0:
return {"status": "insufficient_data"}
# Trend-Analyse für wichtige Metriken
trends = {}
for metric in ['mae', 'rmse', 'confidence_accuracy']:
metric_data = df[df['metric_name'] == metric].sort_values('date')
if len(metric_data) >= 3:
# Einfache Trend-Berechnung
recent_avg = metric_data.tail(3)['metric_value'].mean()
historical_avg = metric_data.head(-3)['metric_value'].mean() if len(metric_data) > 3 else recent_avg
trend_pct = ((recent_avg - historical_avg) / historical_avg) * 100
# Für Fehler-Metriken ist ein Anstieg schlecht
degradation = trend_pct > 10 if metric in ['mae', 'rmse'] else trend_pct < -10
trends[metric] = {
'trend_pct': trend_pct,
'degradation_detected': degradation,
'recent_avg': recent_avg,
'historical_avg': historical_avg
}
return trends
# Usage in FastAPI service
monitor = ModelPerformanceMonitor()
@app.middleware("http")
async def log_predictions(request: Request, call_next):
response = await call_next(request)
# Prediction logging (nur für /predict endpoint)
if request.url.path == "/predict" and response.status_code == 200:
# Log entry erstellen und speichern
# (Details abhängig von der spezifischen Implementation)
pass
return responseMLOps Best Practices
- ✓Versionierung: Code, Daten und Modelle immer versionieren
- ✓Reproduzierbarkeit: Deterministische Pipelines aufbauen
- ✓Testing: Unit-, Integration- und Model-Tests
- ✓Monitoring: Set up continuous monitoring
- ✓Rollback: Schnelle Rollback-Strategien implementieren
- ✓Security: Consider security aspects from the outset
- ✓Documentation: Umfassende Dokumentation pflegen
- ✓Governance: Klare Rollen und Prozesse definieren
MLOps Tools & Technologien
Experiment Tracking
- •MLflow
- •Weights & Biases
- •Neptune AI
- •TensorBoard
Model Serving
- •TensorFlow Serving
- •TorchServe
- •Seldon Core
- •KServe (KubeFlow)
Orchestration
- •Apache Airflow
- •Kubeflow Pipelines
- •Prefect
- •MLflow Pipelines
Inhaltsverzeichnis
Deployment Checklist
Verwandte Artikel
Voraussetzungen
🚀 Bereit für Production-ML?
Lassen Sie uns Ihre ML-Modelle erfolgreich in die Produktion bringen. Von der Container-Entwicklung bis zum automatisierten Deployment - wir unterstützen Sie bei jedem Schritt.